Exciton Rabi Oscillation in a Single Quantum Dot

Abstract
A spectroscopic method, which enables characterization of a single isolated quantum dot and a quantum wave function interferometry, is applied to an exciton discrete excited state in an InGaAs quantum dot. Long coherence of zero-dimensional excitonic states made possible the observation of coherent population flopping in a 0D excitonic two-level system in a time-domain interferometric measurement. Corresponding energy splitting is also manifested in an energy-domain measurement.