Sodium, ATP, and intracellular pH transients during reversible complete ischemia of dog cerebrum.

Abstract
We tested the hypotheses that with the onset of cerebral ischemia, massive cellular sodium influx does not occur until adenosine triphosphate is fully depleted and that on reperfusion, neuronal sodium efflux does not occur until adenosine triphosphate is fully restored. We examined the temporal relationships among transcellular sodium, energy metabolism, and intracellular pH with sodium and phosphorus magnetic resonance spectroscopy in a new, hemodynamically stable, brain stem-sparing model of reversible, complete cerebral ischemia in eight anesthetized dogs. Inflation of a neck tourniquet after placement of glue at the tip of the basilar artery resulted in decreased blood flow to the cerebrum from 29 +/- 5 to 0.3 +/- 0.5 ml/min/100 g. Medullary blood flow was not significantly affected, and arterial blood pressure was unchanged. Sodium signal intensity decreased and did not lag behind the fall in adenosine triphosphate. After 12 minutes of ischemia, reperfusion resulted in a more rapid recovery of sodium intensity (12.4 +/- 4.8 minutes) than either adenosine triphosphate (16.5 +/- 3.7 minutes) or intracellular pH (38.9 +/- 1.8 minutes). Because intracellular sodium has a weaker signal than extracellular sodium, the decreased sodium intensity is interpreted as sodium influx and indicates that sodium influx does not require full depletion of adenosine triphosphate. Rapid recovery of sodium intensity during early reperfusion may represent sodium efflux, although increased plasma volume and sodium uptake from plasma may also contribute. If our interpretation of the sodium signal is correct, delayed recovery of adenosine triphosphate may be due to the utilization of adenosine triphosphate for the restoration of transcellular sodium gradient.

This publication has 21 references indexed in Scilit: