Abstract
The relationship between the chloramphenicol (CAP)-resistant phenotype and the mtDNA genotype was investigated in segregating human, HeLa × HT1080, somatic cell hybrids. The parental mtDNAs were quantitated in heteroplasmic cells by using restriction fragment length polymorphisms (RFLPs) detected in Southern blots. CAP-resistant (R) × CAP-sensitive (S) hybrids selected and grown in CAP for brief periods had as little as 25% CAP-R mtDNA. With prolonged selection, the CAP-R mtDNA increased to 90–95%. Hybrids selected and passaged without CAP either retained both mtDNAs or progressively lost one mtDNA (mitotic segregation). The CAP-resistance phenotype of these hybrids changed abruptly when the proportion of CAP-R mtDNAs fluctuated around approximately 10% (threshold effect). Hybrids with greater than 25% HT1080 mtDNA had an additional characteristic. They cloned better with CAP than without. The cloning efficiency in CAP of hybrids having 90% HT1080 mtDNA was more than fivefold greater than the control.