Effect of Insulin on Potassium Flux and Water and Electrolyte Content of Muscles from Normal and from Hypophysectomized Rats

Abstract
It was reported previously that insulin hyperpolarized rat skeletal muscle and decreased K+ flux in both directions. The observations on K+ flux are now extended to take advantage of the greater sensitivity to insulin of hyperphysectomized rats. Insulin caused a shift of water from extracellular to intracellular space if glucose was present, but not in its absence. Insulin caused net gain of muscle fiber K+, though not necessarily an increase in K+ concentration in fiber water. It probably also decreased intrafiber Na+ and Cl-. Insulin decreased K+ efflux. The effect was dose-dependent. Muscles from hypophysectomized rats were more sensitive to the action of insulin on K+ flux than were those from normal rats. The effect was demonstrable within the time resolution of the system, suggesting that insulin's action is on cell surfaces. K+ influx was also decreased by insulin. Bookkeeping suggests that some K+ influx be called active. Insulin seemed to decrease active K+ influx and passive K+ efflux. It is not resolved whether insulin has a true dual effect or whether it acts only on passive fluxes in both directions (the apparent action on active K+ influx being an artefact of incomplete definition of passive flux) or whether a single alteration in the membrane may affect both active and passive fluxes.