Annealing behavior of bulkn-GaAs irradiated by electrons at 77°K

Abstract
Annealing behavior of electrical properties and photoluminescence spectra both at 77 °K in electron-irradiated melt-grown n-GaAs were investigated. Defects electrically active in the Hall mobility and carrier removal anneal through two stages centered at 250° and 460 °K. From the temperature dependence of carrier concentration the existence of a defect level located near 0.15 eV below the conduction band is supposed. Several emission bands are resolved at 1.51, 1.47, 1.415, 1.305 and ∼1.2 eV in photoluminescence experiments. Electron irradiation (1.5–2.0 MeV) causes a remarkable decrease in emission intensity of 1.51 and ∼1.2 eV bands. Recovery of emission intensity occurs remarkably when samples are annealed to 520 °K which would correspond to the 460 °K annealing stage for carrier concentration and Hall mobility. The 250 °K annealing stage is not observed in photoluminescence experiments. The 1.415 eV peak appears clearly after irradiation and grows remarkably with the 520 °K annealing, especially in Si-doped samples, resulting in large reverse annealing. This band is tentatively speculated to be a complex of Si on As site with As vacancy. Moreover, in samples doped with Te a new emission band at 1.305 eV (9500 Å) is observed after 470°–620 °K annealing.

This publication has 20 references indexed in Scilit: