The accessory optic system of rabbit. II. Spatial organization of direction selectivity

Abstract
1. To compare the spatial organization of the direction selectivity of neurons in the medial terminal nucleus (MTN) of the accessory optic system with that of neurons in the adjacent ventral tegmentum, extracellular single-unit recordings were made in the anesthetized rabbit. The ventral tegmental neurons were located in a region called the visual tegmental relay zone (VTRZ), which is defined by the ventral tegmental terminal field of contralaterally projecting MTN neurons. 2. Some of the present sample of MTN neurons (5 of 34) had monocular receptive fields composed of two parts distinguished by a marked difference in the orientation of their respective direction-selective tuning curves. For one part of the receptive field the preferred excitatory direction was "up," while for the other part it was "down." Such receptive fields for one eye were called bipartite, whereas the more usually encountered MTN receptive fields, which could be characterized by a single direction-selective tuning curve, were called uniform. 3. Of the 16 neurons recorded from the VTRZ, all but one were binocular. For these neurons, both uniform and bipartite receptive fields were found for each eye alone. The only monocular neuron encountered in the VTRZ had a contralateral, bipartite receptive field. 4. The spatial organization of the direction selectivity of bipartite receptive fields strongly suggests that they are suited to represent rotation of the visual field about a horizontal axis located in the vertical plane that divides the receptive field into two parts. 5. The boundary between the two parts of the bipartite receptive fields was found using handheld visual stimuli at one of two azimuthal locations, either close to 45 degrees or between 95 and 125 degrees (the 0 degree reference was rostral in the midsagittal plane). This particular structure of the bipartite receptive fields suggests that their preferred rotation axes have a close spatial relation to the best-response axes of the semicircular canals. 6. Seven VTRZ neurons were antidromically activated by electrical stimulation of the ipsilateral dorsal cap of the inferior olive. Since the receptive fields of VTRZ neurons have many of the structural features characteristic of the receptive fields of rostral dorsal cap neurons we conclude that the spatial organization of the receptive fields of dorsal cap neurons is, for the most part, synthesized prior to the inferior olive.(ABSTRACT TRUNCATED AT 400 WORDS)