Abstract
The standard integral equation for the surface current is solved iterativcly to obtain an estimate of the surface current on a perfectly conducting randomly rough surface. The far-zone scattered fields and the backscattering coefficients for vertical, horizontal and cross-polarizations are then computed using this current estimate. The polarized backscattering coefficients are explicit functions of the surface parameters and reduce to the Kirchhoff solution in the high-frequency region and to the first-order perturbation solution in the low-frequency region. The cross-polarized scattering coefficient reduces to the second-order perturbation result in the low-frequency region and to zero in the high-frequency limit. A comparison is made with scattering measurements taken under laboratory conditions on a random surface with ka equal to 0-44 and kl equal to 3-25 ( l is the correlation length) It is found that better agreement is obtained with the current model than with the first-order perturbation model in predicting polarized scattering. It is also shown that the separation between VV and HH polarizations decreases gradually with frequency and approaches zero in the high-frequency limit

This publication has 22 references indexed in Scilit: