Adenovirus-mediated PTEN treatment combined with caffeine produces a synergistic therapeutic effect in colorectal cancer cells

Abstract
The tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 (PTEN) gene is a negative regulator of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt/PKB) signaling pathway. Overexpression of PTEN in cancer cells results in cell-cycle arrest and cell death through inhibition of PI3K. Caffeine, a xanthine analogue, is well known to enhance the cytocidal and growth-inhibitory effects of DNA-damaging agents such as radiation, UV light, and anticancer agents on tumor cells by abrogating DNA-damage checkpoints through inhibition of ataxia-telangiectasia-mutated (ATM), and ATM and Rad3-related (ATR) kinase activity. In this study, we demonstrate that treatment with a combination of adenovirus-mediated transfer of PTEN (Ad-PTEN) and caffeine synergistically suppressed cell growth and induced apoptosis in colorectal cancer cells but not in normal colorectal fibroblast cells. This synergistic effect was induced through abrogation of G2/M arrest, downregulation of the Akt pathway, and modulation of the p44/42MAPK pathway. Thus, combined treatment with Ad-PTEN and caffeine is a potential therapy for colorectal cancer.