Hydrologic Visibility of Weather Radar Systems Operating in Mountainous Regions: Case Study for the Ardèche Catchment (France)

Abstract
A simulation procedure has been developed for use in predetermining the expected quality of rain-rate estimates that a given weather radar system operating in a mountainous region may obtain over a given hydrologic catchment. This first application of what is referred to as the “hydrologic visibility” concept focuses on the quantification of the rain-rate error resulting from the effects of ground clutter, beam blockage, and the vertical profile of reflectivity (VPR). The assessment of the impact of the space–time structure of the radar error in terms of discharge at the catchment outlet is also investigated using a distributed hydrologic model. A case study is presented for the Ardèche catchment in France using the parameters of two S-band weather radars operated by Météo-France at Nîmes and Bollène. Radar rain-rate error generation and rainfall–runoff simulations are performed using VPR and areal rainfall time series representative of the Cévennes rain climatology. The major impact of ground cl... Abstract A simulation procedure has been developed for use in predetermining the expected quality of rain-rate estimates that a given weather radar system operating in a mountainous region may obtain over a given hydrologic catchment. This first application of what is referred to as the “hydrologic visibility” concept focuses on the quantification of the rain-rate error resulting from the effects of ground clutter, beam blockage, and the vertical profile of reflectivity (VPR). The assessment of the impact of the space–time structure of the radar error in terms of discharge at the catchment outlet is also investigated using a distributed hydrologic model. A case study is presented for the Ardèche catchment in France using the parameters of two S-band weather radars operated by Météo-France at Nîmes and Bollène. Radar rain-rate error generation and rainfall–runoff simulations are performed using VPR and areal rainfall time series representative of the Cévennes rain climatology. The major impact of ground cl...

This publication has 22 references indexed in Scilit: