Transport Processes and Corresponding Changes in Metabolite Levels in Relation to Starch Synthesis in Barley (Hordeum vulgare L.) Etioplasts

Abstract
Intact etioplasts with an intactness of 85% and with a cytosolic and a mitochondrial contamination of less than 10% were isolated from 8-d-old dark-grown barley (Hordeum vulgare) leaves. These plastids contained starch equivalent to 21.5 μmol of glucose per mg protein. From various likely precursors applied to isolated etioplasts, only dihydroxyacetone phosphate (DHAP) had significant effects on metabolite levels and on the internal ATP/ADP ratio. The concentration dependence of DHAP uptake exhibited saturation characteristics with half saturation at 0.36 mm DHAP and a maximal velocity of 6.6 μmol mg−1 of protein h−1. The transport was significantly inhibited by inorganic phosphate, pyridoxal-5′-phosphate, and 4,4′-diisothiocyano-2,2′-stilbenedisulfonate. The rate of glucose-6-phosphate uptake was much lower and not saturable up to a concentration of 10 mm. Exogenously applied [14C]DHAP was incorporated into starch at a rate of 0.14 μmol of DHAP mg−1 of protein h−1. Enzyme activities required to convert DHAP into starch were found to be present in etioplasts. Furthermore, enzymes generating ATP from DHAP for ADPglucose synthesis were also detected. Finally, a scheme is presented suggesting DHAP uptake to serve both as carbon skeleton and as energy source for starch synthesis, mediated by a translocator with properties similar to those of the triose phosphate translocator from chloroplasts.