Requirements for Effective Inhibition of Immunostimulatory CpG Motifs by Neutralizing Motifs

Abstract
The DNA of bacteria and many viruses contain unmethylated CpG dinucleotides in particular sequence contexts that activate vertebrate immune cells. A subset of these CpG motifs was previously found to oppose the effects of immunostimulatory (CpG-S) motifs and has been termed neutralizing (CpG-N) motifs. Here we show that oligodeoxynucleotides (ODNs) composed of clusters of CpG-N motifs could partially inhibit the induction of interleukin-12 (IK-12) from mouse spleen cells by ODN containing CpG-S motifs. However, non-CpG-containing ODN were also inhibitory, suggesting that neutralization of CpG-S ODNs by CpG-N ODNs in trans was nonspecific. Neutralization of CpG-S motifs by CpG-N motifs in cis was specific, but the degree of inhibition was strongly dependent on the particular CpG-S motif being neutralized, with motifs having an A residue 5′ to the CG being much more resistant to inhibition than motifs having a T residue 5′ to the CG. The degree of inhibition was dependent on the spacing between the CpG-S and CpG-N motifs, with the ability to neutralize inversely correlating with distance. In addition, whereas ODNs containing extended clusters of CpG-N motifs were nonstimulatory, isolated CpG-N motifs remained stimulatory in most sequence contexts. Finally, CpG-N ODNs were shown to be nonstimulatory when instilled into the lungs of BALB/c mice, but the ability of CpG-N motifs to neutralize CpG-S motifs in cis was not observed. These results show that there are precise and fairly complex interactions between immunostimulatory and inhibitory sequence motifs that govern whether a given DNA is able to activate the vertebrate immune system.