Isolation of rat hepatoma cell variants selectively resistant to dexamethasone inhibition of plasminogen activator

Abstract
Glucocorticoids induce several phenotypic changes in rat hepatoma cells in tissue culture, including the inhibition of plasminogen activator activity. Variant cell lines resistant to dexamethasone inhibtion of plasminogen activator activity have been isolated using an agar-fibrin overlay technique to identify colonies with fibrinolytic (plasminogen activator) activity. The variants are resistant to concentrations of dexamethasone 1,000 times that necessary to completely inhibit plasminogen activator activity in wild-type cells. The variant phenotype has been inherited in a stable manner for more than 300 generations in continuous culture in the absence of dexamethasone. These variants are unique in that the resistance is not secondary to defective or absent glucocorticoid receptors but is due to a lesion specific for regulation of plasminogen activator. Fluctuation analyses support the hypothesis that resistance to dexamethasone arises randomly and is not induced by dexamethasone. Because HTC cells are heteroploid and karyotypically highly variable, variants are thought to arise primarily by chromosomal segregation events. These variants provide a valuable tool for studying the mechanism of hormonal regulation of plasminogen activator as well as the role of proteases in hormonal regulation of membrane functions.