The stability of O-antigen plasmid is determined by a chromosomal region of Shigella dysenteriae

Abstract
It is well established that plasmids are involved in the expression of lipopolysaccharide in certain species of Shigella. In Shigella sonnei, both the biosynthesis of oligosaccharide side chains (O antigen), and cell invasiveness are controlled exclusively by a 120 megadalton (MDa) plasmid. In Shigella dysenteriae 1, a 10 kilobase (kb) plasmid is required for O-antigen production. Shigella dysenteriae 1 strains devoid of this plasmid lose the ability to synthesize O antigen. Interestingly, this 10-kb plasmid is not stably maintained in Escherichia coli K-12 strains, where it is lost spontaneously at a high frequency. Our genetic analyses of Shigella dysenteriae 1 strain IDBM11 and its derivatives indicate that the stability of this plasmid is associated with the histidine region of the chromosome which is unique to Shigella dysenteriae. Furthermore, the 10-kb plasmid is stably maintained in wild-type IDBM11 with an intact histidine locus. However, this plasmid is not stable in IDBM11 derivatives (e.g., IDBM11-1 and IDBM11-2), in which the his locus has been substituted with the histidine region of an E. coli K-12 chromosome. The S. dysenteriae IDBM11 strain, and its derivatives (lacking a 10-kb plasmid), displayed an invasive property as demonstrated by their internalization by HeLa cells in an in vitro assay. Thus the 10-kb plasmid of Shigella dysenteriae 1 is required for O-antigen synthesis but not for cell invasion.