Abstract
In this study we observed relaxation in helical strips of rat tail artery in response to high concentrations of calcium after contraction induced by 10(-7) g/ml norepinephrine. This action of calcium on vascular smooth muscle contraction is referred to as the “membrane-stabilizing effect” of calcium. The current study demonstrates that changes caused by many of the variables that alter this relaxation induced by calcium parallel changes in relaxation in response to potassium; both are attenuated by ouabain, low sodium, reduced temperature, and low potassium. Relaxation produced by manganese is not similarly affected. Because potassium has been shown to cause relaxation of vascular smooth muscle by increasing the activity of sodium-potassium ATPase, we conclude that the relaxation produced by high concentrations of calcium is dependent on the activity of sodium-potassium ATPase; that produced by manganese is not.