Abstract
This paper is concerned with the molecular origin of the dipole moment of sperm whale myoglobin as it can be calculated from the dielectric dispersion at 1 Mcps on the basis of a mechanism of orientational polarization. It was possible to compare the dielectric increment of native myoglobin and its change during the reaction with bromo acetate with dipole moments calculated according to the known coordinates of the charged groups of the molecule. The agreement between the two shows that in myoglobin only the permanent dipole moment due to these charged groups is important, and that contributions from other possible sources remain within the limits of experimental error.