Controlled fundamental supermode operation of phase-locked arrays of gain-guided diode lasers

Abstract
Uniform semiconductor laser arrays tend to oscillate in a superposition of their supermodes, thus leading to large beam divergence and spectral spread. Discrimination among the supermodes in phase-locked arrays is discussed theoretically. It is shown that supermode discrimination in gain-guided arrays, in favor of the fundamental supermode, is made possible by the near-field interference patterns which result from the complex optical fields of the gain-guided lasers. A fundamental supermode operation is demonstrated, for the first time, in GaAlAs/GaAs gain-guided laser arrays. This is achieved by control of the current (gain) profile across the array by means of individual laser contacts.