Nuclear Overhauser Effect and Computational Characterization of the β-Spiral of the Polypentapeptide of Elastin

Abstract
The structure of the elastin polypentapeptide, poly(VPGVG), was studied by nuclear Overhauser effect experiments using perdeuterated Val1 and Val4 samples under the condition where intermolecular interactions are absent. More extensive interaction was found between the Val1 γCH and Pro2 βCH protons than between the Val4 γCH and Pro2 βCH protons. The Val1 γCH3—Pro2 βCH interaction does not occur within the same pentamer as previously shown experimentally and as expected from steric considerations. The results are incompatible with the presence of a random chain network in poly(VPGVG) at room temperature but are readily explicable in terms of interturn interactions in a β-spiral structure. More specifically, the results indicate that the β-spiral conformation with 2.9 pentamers/turn is more prevalent than that with 2.7 pentamers/turn. Using conformations developed by molecular mechanics calculations, molecular dynamics simulations were carried out to compare the relative energies of these two variants of this class of β-spiral structures. It was found in vacuo that the structure with 2.9 pentamers/turn is indeed more stable than that of 2.7 pentamers/turn by ~ 1 kcal/mole-pentamer.