Low-Pressure UV Inactivation and DNA Repair Potential of Cryptosporidium parvum Oocysts

Abstract
Because Cryptosporidium parvum oocysts are very resistant to conventional water treatment processes, including chemical disinfection, we determined the kinetics and extent of their inactivation by monochromatic, low-pressure (LP), mercury vapor lamp UV radiation and their subsequent potential for DNA repair of UV damage. A UV collimated-beam apparatus was used to expose suspensions of purifiedC. parvum oocysts in phosphate-buffered saline, pH 7.3, at 25°C to various doses of monochromatic LP UV. C. parvuminfectivity reductions were rapid, approximately first order, and at a dose of 3 mJ/cm2 (=30 J/m2), the reduction reached the cell culture assay detection limit of ∼3 log10. At UV doses of 1.2 and 3 mJ/cm2, the log10 reductions of C. parvum oocyst infectivity were not significantly different for control oocysts and those exposed to dark or light repair conditions for UV-induced DNA damage. These results indicate that C. parvum oocysts are very sensitive to inactivation by low doses of monochromatic LP UV radiation and that there is no phenotypic evidence of either light or dark repair of UV-induced DNA damage.