Mass Balance Along Two Transects of the West Side of the Greenland Ice Sheet

Abstract
The mass balance is computed along the Ohio State University (OSU) transect near the Arctic Circle and along the Expédition Glaciologique Internationale au Groenland (EGIG) line. Measured surface velocities are compared with velocities calculated from up-glacial accumulation rate, flow-line spreading, ice thickness, and the depth variation in horizontal velocity. The depth variation in velocity is calculated using the constitutive relation for ice, calculated temperatures within the glacier, computed shear and longitudinal stresses, and allowance for impurity content and ice-crystal orientation. The resulting mass balance is +0.6 ± 0.14 m a−1 for the OSU transect and 0 ± 0.07 m a−1 along the EGIG line. The errors arise mainly from uncertainties in measured accumulation rate and flow-line spreading, and perhaps in flow-enhancement factors due to ice anisotropy or impurities. The results for the EGIG line differ from prior estimates mainly because earlier works placed greater emphasis on short-term accumulation rates.