Abstract
A unified microscopic theoretical framework for the calculation of optical excitations in molecular and semiconductor materials is presented. The hierarchy of many-body density matrices for a pair-conserving many-electron model and the Frenkel exciton model is rigorously truncated to a given order in the radiation field. Closed equations of motion are derived for five generating functions representing the dynamics up to third order in the laser field including phonon degrees of freedom as well as all direct and exchange-type contributions to the Coulomb interaction. By eliminating the phonons perturbatively the authors obtain equations that, in the case of the many-electron system, generalize the semiconductor Bloch equations, are particularly suited for the analysis of the interplay between coherent and incoherent dynamics including many-body correlations, and lead to thermalized exciton (rather than single-particle) distributions at long times. A complete structural equivalence with the Frenkel exciton model of molecular materials is established.