Abstract
A set of constitutive equations is derived to describe the time-dependent flow of a dilute suspension of identical rigid particles of arbitrary shape which are influenced by Brownian couples. The form of the orientation probability distribution for small departures from isotropy is found. The case of weak flows with strong Brownian effects is studied in detail, and the viscoelastic approximation and second-order-fluid limit of the constitutive equation are derived for a general particle shape. A full numerical solution is given for ellipsoids. The general nearly spherical particle is also considered and constitutive equations for general flow strengths are obtained for this case.