Monolithic integration of an infrared photon detector with a MEMS-based tunable filter

Abstract
The monolithic integration of a low-temperature microelectromechanical system (MEMS) and HgCdTe infrared detector technology has been implemented and characterized. The MEMS-based tunable optical filter, integrated with an infrared detector, selects narrow wavelength bands in the range from 1.6 to 2.5 /spl mu/m within the short-wavelength infrared (SWIR) region of the electromagnetic spectrum. The entire fabrication process is compatible with two-dimensional infrared focal plane array technology. The fabricated device consists of an HgCdTe SWIR photoconductor, two distributed Bragg mirrors formed of Ge-SiO-Ge, a sacrificial spacer layer within the cavity, which is then removed to leave an air gap, and a silicon nitride membrane for structural support. The tuning spectrum from fabricated MEMS filters on photoconductive detectors shows a wide tuning range, and high percentage transmission is achieved with a tuning voltage of only 7.5 V. The full-width at half-maximum ranged from 95 to 105 nm over a tuning range of 2.2-1.85 /spl mu/m.