Discrete temporal solitons along a chain of nonlinear coupled microcavities embedded in photonic crystals

Abstract
We demonstrate that spatiotemporal discrete solitons are possible in nonlinear photonic crystal structures. Analysis indicates that these states can propagate undistorted along a series of coupled resonators or defects by balancing of the effects of discrete lattice dispersion with material nonlinearity. In principle, these self-localized entities are capable of exhibiting very low velocities, depending on the coupling coefficient among successive microcavities. This class of solitons can follow any preassigned path in a three-dimensional environment.