Purification of a malonyltransferase from Streptomyces coelicolor A3(2) and analysis of its genetic determinant

Abstract
Streptomyces coelicolor A3(2) synthesizes each half molecule of the dimeric polyketide antibiotic actinorhodin (Act) from one acetyl and seven malonyl building units, catalyzed by the Act polyketide synthase (PKS). The synthesis is analogous to fatty acid biosynthesis, and there is evident structural similarity between PKSs of Streptomyces spp. and fatty acid synthases (FASs). Each system should depend on a malonyl coenzyme A:acyl carrier protein malonyltransferase, which charges the FAS or PKS with the malonyl units for carbon chain extension. We have purified the Act acyl carrier protein-dependent malonyltransferase from stationary-phase, Act-producing cultures and have determined the N-terminal amino acid sequence and cloned the structural gene. The deduced amino acid sequence resembles those of known malonyltransferases of FASs and PKSs. The gene lies some 2.8 Mb from the rest of the act cluster, adjacent to an open reading frame whose gene product resembles ketoacylsynthase III of Escherichia coli FAS. The malonyltransferase was expressed equally as well during vegetative growth (when other components of the act PKS were not expressed) as in the stationary phase, suggesting that the malonyltransferase may be shared between the FAS and PKS of S. coelicolor. Disruption of the operon containing the malonyltransferase gene proved to be impossible, supporting the idea that the malonyltransferase plays an essential role in fatty acid biosynthesis.