Retinoic acid signalling links left–right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo

Abstract
During embryogenesis, cells are spatially patterned as a result of highly coordinated and stereotyped morphogenetic events. In the vertebrate embryo, information on laterality is conveyed to the node, and subsequently to the lateral plate mesoderm, by a complex cascade of epigenetic and genetic events, eventually leading to a left–right asymmetric body plan. At the same time, the paraxial mesoderm is patterned along the anterior–posterior axis in metameric units, or somites, in a bilaterally symmetric fashion. Here we characterize a cascade of laterality information in the zebrafish embryo and show that blocking the early steps of this cascade (before it reaches the lateral plate mesoderm) results in random left–right asymmetric somitogenesis. We also uncover a mechanism mediated by retinoic acid signalling that is crucial in buffering the influence of the flow of laterality information on the left–right progression of somite formation, and thus in ensuring bilaterally symmetric somitogenesis.