p-Trifluoromethyldiazirinyl-etomidate: A Potent Photoreactive General Anesthetic Derivative of Etomidate That Is Selective for Ligand-Gated Cationic Ion Channels

Abstract
We synthesized the R- and S-enantiomers of ethyl 1-(1-(4-(3-((trifluoromethyl)-3H-diazirin-3-yl)phenyl)ethyl)-1H-imidazole-5-carboxylate (trifluoromethyldiazirinyl-etomidate), or TFD-etomidate, a novel photoactivable derivative of the stereoselective general anesthetic etomidate (R-(2-ethyl 1-(phenylethyl)-1H-imidazole-5-carboxylate)). Anesthetic potency was similar to etomidate’s, but stereoselectivity was reversed and attenuated. Relative to etomidate, TFD-etomidate was a more potent inhibitor of the excitatory receptors, nAChR (nicotinic acetylcholine receptor) ((α1)2β1δ1γ1) and 5-HT3AR (serotonin type 3A receptor), causing significant inhibition at anesthetic concentrations. S- but not R-TFD-etomidate enhanced currents elicited from inhibitory α1β2γ2L GABAARs by low concentrations of GABA, but with a lower efficacy than R-etomidate, and site-directed mutagenesis suggests they act at different sites. [3H]TFD-etomidate photolabeled the α-subunit of the nAChR in a manner allosterically regulated by agonists and noncompetitive inhibitors. TFD-etomidate’s novel pharmacology is unlike that of etomidate derivatives with photoactivable groups in the ester position, which behave like etomidate, suggesting that it will further enhance our understanding of anesthetic mechanisms.

This publication has 39 references indexed in Scilit: