Priority encoding transmission

Abstract
We introduce a new method, called priority encoding transmission, for sending messages over lossy packet-based networks. When a message is to be transmitted, the user specifies a priority value for each part of the message. Based on the priorities, the system encodes the message into packets for transmission and sends them to (possibly multiple) receivers. The priority value of each part of the message determines the fraction of encoding packets sufficient to recover that part. Thus even if some of the encoding packets are lost en-route, each receiver is still able to recover the parts of the message for which a sufficient fraction of the encoding packets are received. For any set of priorities for a message, we define a natural quantity called the girth of the priorities. We develop systems for implementing any given set of priorities such that the total length of the encoding packets is equal to the girth. On the other hand, we give an information-theoretic lower bound that shows that for any set of priorities the total length of the encoding packets must be at least the girth. Thus the system we introduce is optimal in terms of the total encoding length. This work has immediate applications to multimedia and high-speed networks applications, especially in those with bursty sources and multiple receivers with heterogeneous capabilities. Implementations of the system show promise of being practical.

This publication has 15 references indexed in Scilit: