The growth of AuGa2 thin films on GaAs(001) to form chemically unreactive interfaces

Abstract
Thin AuGa2 films were grown by codeposition from separate Au and Ga evaporation sources on clean GaAs(001) substrates in ultrahigh vacuum, and were studied by Auger electron spectroscopy, electron energy-loss spectroscopy, low-energy electron diffraction, scanning electron microscopy, and x-ray diffractometry. The morphology and crystallinity of the AuGa2 were highly dependent upon the film deposition and annealing history. Films grown on room-temperature substrates were continuous, specular, and polycrystalline, but the dominant orientation was with the (001) planes of the crystallites parallel to the substrate surface. Annealing to temperatures between 300°and 480°C caused the film to break up and coalesce into rectangular crystallites, which were all oriented with (001) parallel to the surface. An anneal to 500°C, which is above the AuGa2 melting point, resulted in the formation of irregular polycrystalline islands of AuGa2 on the GaAs(001) substrate. No interface roughening or chemical reactions between the film and substrate or interface were observed for even the highest-temperature anneals.