Abstract
The virus of encephalomyocarditis (EMC), examined by the negative-contrast method, is indistinguishable from the serologically related Mengovirus. The particles are 270 to 280 A in diameter. The surface of EMC is composed of an undetermined number of subunits. Frequent sampling of infected cells was carried out throughout one-step cycles of viral multiplication to observe cytopathic changes occurring in L cells infected by these two related RNA viruses. EMC and Mengovirus, which multiply at equal rates, in most respects elicit similar alterations in cell fine structure. Rearrangement and changes in nuclear material accompanied by formation of small vesicles in the centrosphere region commence at 4 to 6 hours after infection. Thereafter a progressive degeneration of the nucleus and vesiculation of the cytoplasm are observed up to 18 to 20 hours. Increased numbers of small dense granules, indistinguishable from ribonucleoprotein particles, appear in the cytoplasm between 8 and 14 hours after infection. L cells infected with Mengovirus become permeable to Erythrocin more slowly than those infected with EMC. Only in the case of Mengovirus infection are large aggregates of dense material first observed in the cytoplasm at 8 hours, followed by the appearance of crystals probably composed of Mengovirus particles, at 12 hours. Differences in the rates of cell permeability after infection with EMC and Mengovirus are discussed in relation to formation of virus crystals and plaque-type mutants.