Amylopectin Degradation in Pea Chloroplast Extracts

Abstract
Phosphorolysis rather than phosphorylation of amylolysis products was found to be the major pathway of sugar phosphate formation from amylopectin by pea (Pisum sativum L.) chloroplast stromal proteins. The Km for inorganic phosphate incorporation was 2.5 mm, and ATP did not stimulate amylopectin-dependent phosphate incorporation. Arsenate (10 mm) inhibited phosphate incorporation into glucose monophosphates up to 46% and phosphoglucomutase activity 96%, resulting in glucose 1-phosphate accumulation as a product of amylopectin degradation. The intracellular distribution of enzymes of starch utilization was determined. Phosphorylase, phosphoglucomutase, and hexokinase were found in the chloroplast and cytoplasm, while β-amylase was restricted to the cytoplasm. Maltase was not detectable; maltose phosphorylase was active in the chloroplast.