Divergent functions of VTI12 and VTI11 in trafficking to storage and lytic vacuoles in Arabidopsis
- 27 February 2007
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 104 (9), 3645-3650
- https://doi.org/10.1073/pnas.0611147104
Abstract
The protein storage vacuole (PSV) is a plant-specific organelle that accumulates reserve proteins, one of the main agricultural products obtained from crops. Despite the importance of this process, the cellular machinery required for transport and accumulation of storage proteins remains largely unknown. Interfering with transport to PSVs has been shown to result in secretion of cargo. Therefore, secretion of a suitable marker could be used as an assay to identify mutants in this pathway. CLV3, a negative regulator of shoot stem cell proliferation, is an extracellular ligand that is rendered inactive when targeted to vacuoles. We devised an assay where trafficking mutants secrete engineered vacuolar CLV3 and show reduced meristems, a phenotype easily detected by visual inspection of plants. We tested this scheme in plants expressing VAC2, a fusion of CLV3 to the vacuolar sorting signal from the storage protein barley lectin. In this way, we determined that trafficking of VAC2 requires the SNARE VTI12 but not its close homologue, the conditionally redundant VTI11 protein. Furthermore, a vti12 mutant is specifically altered in transport of storage proteins, whereas a vti11 mutant is affected in transport of a lytic vacuole marker. These results demonstrate the specialization of VTI12 and VTI11 in mediating trafficking to storage and lytic vacuoles, respectively. Moreover, they validate the VAC2 secretion assay as a simple method to isolate genes that mediate trafficking to the PSV.Keywords
This publication has 47 references indexed in Scilit:
- ArabidopsisEPSIN1 Plays an Important Role in Vacuolar Trafficking of Soluble Cargo Proteins in Plant Cells via Interactions with Clathrin, AP-1, VTI11, and VSR1Plant Cell, 2006
- Multiple Vacuolar Sorting Determinants Exist in Soybean 11S GlobulinPlant Cell, 2006
- Sorting of proteins to storage vacuoles: how many mechanisms?Trends in Plant Science, 2005
- YKT6 is a Core Constituent of Membrane Fusion Machineries at the Arabidopsis trans-Golgi NetworkJournal of Molecular Biology, 2005
- A gene expression map of Arabidopsis thaliana developmentNature Genetics, 2005
- Identification of the Protein Storage Vacuole and Protein Targeting to the Vacuole in Leaf Cells of Three Plant SpeciesPlant Physiology, 2004
- CLV3 Is Localized to the Extracellular Space, Where It Activates the Arabidopsis CLAVATA Stem Cell Signaling PathwayPlant Cell, 2002
- The SNAREs vti1a and vti1b have distinct localization and SNARE complex partnersEuropean Journal of Cell Biology, 2002
- Vacuolar Storage Proteins and the Putative Vacuolar Sorting Receptor BP-80 Exit the Golgi Apparatus of Developing Pea Cotyledons in Different Transport VesiclesPlant Cell, 1999
- Golgi-mediated vicilin accumulation in pea cotyledon cells is re-directed by monensin and nigericinProtoplasma, 1984