Abstract
Thermal inertia is a volume property and shows the resistance power of the material against changes in its temperature. The thermal inertia of a surficial feature of interest cannot be directly measured. Hence, a proper modelling is required for its estimation. The objective of the project is to develop a technique to generate thermal inertia images using available National Oceanic and Atmospheric Administration (NOAA) satellite data to detect thermal anomalies and oilfield signature over a known producing basin. The Brahmaputra valley in Upper Assam is selected for this study. NOAA-Advanced Very High Resolution Radiometer (AVHRR) thermal data were converted to temperature, based on the look-up table (LUT) given in the NOAA-AVHRR CD and by using split-window atmospheric attenuation correction models. The thermal inertia imagery is constructed with the help of the albedo imagery generated from the daytime and with the knowledge of the surface temperature change between the daytime and night-time data. The thermal inertia values are computed for all pixels common to both daytime and night-time and the thermal inertia imagery generated for the study area. The thermal inertia of a surface cannot be measured directly; so another model is also used to estimate apparent thermal inertia (ATI). The images from both the models have shown similar results. The geological map when draped over the ATI image shows good correlation of gross lithology and thermal inertia. The metamorphics/basement and the sediments are well differentiated by their tonal and textural characters. The Mikir massif shows conspicuously brighter signature than the featureless darker signatures of the surrounding valley. Within the valley, the river water exhibits bright tone, whereas the present-day sandbars within the river exhibit darker tone than the alluvial plains of the valley. This is in agreement with the available published data. Major thrusts can be mapped as bright linear tone, and their geometry coincides well with those mapped in the field. Exposed cross faults can also be mapped in Arunachal foothills and faults in Mikir massif. The isoneotectonic map when draped over the ATI image shows that the identified isoneotectonic units can be well differentiated in the image on the basis of tonal characters. The prominent lineaments mapped in Mikir massif can be traced in the valley part also. The producing and dry structures in the valley show very few signatures on the thermal inertia images, possibly due to poor spectral and spatial resolution of the NOAA data. It is planned to use the developed technique to generate thermal inertia maps using higher spatial and spectral resolution satellite data (e.g. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)), which may provide better oilfield signatures.