Surface micromachining for microelectromechanical systems
- 1 August 1998
- journal article
- review article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in Proceedings of the IEEE
- Vol. 86 (8), 1552-1574
- https://doi.org/10.1109/5.704260
Abstract
Surface micromachining is characterized by the fabrication of micromechanical structures from deposited thin films. Originally employed for integrated circuits, films composed of materials such as low-pressure chemical-vapor-deposition polycrystalline silicon, silicon nitride, and silicon dioxides can be sequentially deposited and selectively removed to build or "machine" three-dimensional structures whose functionality typically requires that they be freed from the planar substrate. Although the process to accomplish this fabrication dates from the 1960's, its rapid extension over the past few years and its application to batch fabrication of micromechanisms and of monolithic microelectromechanical systems (MEMS) make a thorough review of surface micromachining appropriate at this time. Four central issues of consequence to the MEMS technologist are: (i) the understanding and control of the material properties of microstructural films, such as polycrystalline silicon, (ii) the release of the microstructure, for example, by wet etching silicon dioxide sacrificial films, followed by its drying and surface passivation, (iii) the constraints defined by the combination of micromachining and integrated-circuit technologies when fabricating monolithic sensor devices, and (iv) the methods, materials, and practices used when packaging the completed device. Last, recent developments of hinged structures for postrelease assembly, high-aspect-ratio fabrication of molded parts from deposited thin films, and the advent of deep anisotropic silicon etching hold promise to extend markedly the capabilities of surface-micromachining technologies.Keywords
This publication has 105 references indexed in Scilit:
- Elastic moduli, strength, and fracture initiation at sharp notches in etched single crystal silicon microstructuresJournal of Applied Physics, 1999
- Commercial vision of silicon-based inertial sensorsSensors and Actuators A: Physical, 1998
- Elimination of post-release adhesion in microstructures using conformal fluorocarbon coatingsJournal of Microelectromechanical Systems, 1997
- Critical Review: Adhesion in surface micromechanical structuresJournal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1997
- A fully integrated micromachined magnetic particle separatorJournal of Microelectromechanical Systems, 1996
- Variations in Young's modulus and intrinsic stress of LPCVD-polysilicon due to high-temperature annealingJournal of Micromechanics and Microengineering, 1995
- Process technology for the modular integration of CMOS and polysilicon microstructuresMicrosystem Technologies, 1994
- Encapsulated micro mechanical sensorsMicrosystem Technologies, 1994
- Microfabricated hingesSensors and Actuators A: Physical, 1992
- Deformable grating optical modulatorOptics Letters, 1992