Roles of Monkey Premotor Neuron Classes in Movement Preparation and Execution

Abstract
Dorsal premotor cortex (PMd) is known to be involved in the planning and execution of reaching movements. However, it is not understood how PMd plan activity—often present in the very same neurons that respond during movement—is prevented from itself producing movement. We investigated whether inhibitory interneurons might “gate” output from PMd, by maintaining high levels of inhibition during planning and reducing inhibition during execution. Recently developed methods permit distinguishing interneurons from pyramidal neurons using extracellular recordings. We extend these methods here for use with chronically implanted multi-electrode arrays. We then applied these methods to single- and multi-electrode recordings in PMd of two monkeys performing delayed-reach tasks. Responses of putative interneurons were not generally in agreement with the hypothesis that they act to gate output from the area: in particular it was not the case that interneurons tended to reduce their firing rates around the time of movement. In fact, interneurons increased their rates more than putative pyramidal neurons during both the planning and movement epochs. The two classes of neurons also differed in a number of other ways, including greater modulation across conditions for interneurons, and interneurons more frequently exhibiting increases in firing rate during movement planning and execution. These findings provide novel information about the greater responsiveness of putative PMd interneurons in motor planning and execution and suggest that we may need to consider new possibilities for how planning activity is structured such that it does not itself produce movement.