Trap States in Lead Iodide Perovskites
Top Cited Papers
- 20 January 2015
- journal article
- research article
- Published by American Chemical Society (ACS) in Journal of the American Chemical Society
- Vol. 137 (5), 2089-2096
- https://doi.org/10.1021/ja512833n
Abstract
Recent discoveries of highly efficient solar cells based on lead iodide perovskites have led to a surge in research activity on understanding photo carrier generation in these materials, but little is known about trap states that may be detrimental to solar cell performance. Here we provide direct evidence for hole traps on the surfaces of three-dimensional (3D) CH3NH3PbI3 perovskite thin films and excitonic traps below the optical gaps in these materials. The excitonic traps possess weak optical transition strengths, can be populated from the relaxation of above gap excitations, and become more significant as dimensionality decreases from 3D CH3NH3PbI3 to two-dimensional (2D) (C4H9NH3I)2(CH3NH3I)n−1(PbI2)n (n = 1, 2, 3) perovskites and, within the 2D family, as n decreases from 3 to 1. We also show that the density of excitonic traps in CH3NH3PbI3 perovskite thin films grown in the presence of chloride is at least one-order of magnitude lower than that grown in the absence of chloride, thus explaining a widely known mystery on the much better solar cell performance of the former. The trap states are likely caused by electron–phonon coupling and are enhanced at surfaces/interfaces where the perovskite crystal structure is most susceptible to deformation.Keywords
This publication has 47 references indexed in Scilit:
- The emergence of perovskite solar cellsNature Photonics, 2014
- Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite AbsorberScience, 2013
- Efficient planar heterojunction perovskite solar cells by vapour depositionNature, 2013
- Sequential deposition as a route to high-performance perovskite-sensitized solar cellsNature, 2013
- Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide PerovskitesScience, 2012
- Mesoscopic CH3NH3PbI3/TiO2Heterojunction Solar CellsJournal of the American Chemical Society, 2012
- Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%Scientific Reports, 2012
- All-solid-state dye-sensitized solar cells with high efficiencyNature, 2012
- 6.5% efficient perovskite quantum-dot-sensitized solar cellNanoscale, 2011
- Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic CellsJournal of the American Chemical Society, 2009