Solutions of the quantum Yang-Baxter equation with extra nonadditive parameters

Abstract
We present a systematic technique to construct solutions to the Yang-Baxter equation which depend not only on a spectral parameter but in addition on further continuous parameters. These extra parameters enter the Yang-Baxter equation in a similar way to the spectral parameter but in a non-additive form. We exploit the fact that quantum non-compact algebras such as Uq(su(1,1)) and type-I quantum superalgebras such as Uq(gl(1 mod 1)) and Uq(gl(2 mod 1)) are known to admit non-trivial one-parameter families of infinite-dimensional and finite-dimensional irreps, respectively, even for generic q. We develop a technique for constructing the corresponding spectral-dependent R-matrices. As examples, we work out the the R-matrices for the three quantum algebras mentioned above in certain representations.