Genomic rearrangements in maize induced by tissue culture

Abstract
Chromosomal instability is a common occurrence in plant tissue cultures and has been documented in plants regenerated from several genotypes of maize (Zea mays L.) tissue cultures. The objective of this research was to evaluate the frequency and types of chromosomal aberrations in regenerated plants of an Oh43–A188 genetic background, which had not been examined previously for chromosome stability in culture. Organogenic callus cultures were intitated from immature embryos of F2 plants for several Oh43 ms isoline × A188 crosses. The chromosome constitution of 267 plants was investigated through meiotic analysis of plants regenerated either 3 to 4 or 8 to 9 months after culture initiation. No abnormalities were detected in 78 plants regenerated during the first period. During the second period, however, 91 of the 189 plants were cytologically abnormal. One hundred and eight aberrations were detected and most (96%) involved changes in chromosome structure such as interchanges (42%), deficiencies (35%), and heteromorphic pairs (19%). All deficiencies were intercalary. Also, most (51%) interchanges involved chromosome 6. An association between male-sterility factors and chromosome instability was not observed. Breakpoints were primarily on chromosome arms containing large blocks of heterochromatin such as knobs. Several abnormal plants from the same culture appeared to contain identical aberrations indicating the aberrations may trace to a single event. A hypothesis for the involvement of heterochromatin in chromosome breakage during in vitro culture is supported. Key words: Zea mays L., tissue culture, somaclonal variation, chromosome breakage, heterochromatin.