Phosphoinositide 5-Phosphatase Fig4p Is Required for both Acute Rise and Subsequent Fall in Stress-Induced Phosphatidylinositol 3,5-Bisphosphate Levels
- 1 April 2006
- journal article
- Published by American Society for Microbiology in Eukaryotic Cell
- Vol. 5 (4), 723-31
- https://doi.org/10.1128/ec.5.4.723-731.2006
Abstract
Phosphoinositide lipids regulate complex events via the recruitment of proteins to a specialized region of the membrane at a specific time. Precise control of both the synthesis and turnover of phosphoinositide lipids is integral to membrane trafficking, signal transduction, and cytoskeletal rearrangements. Little is known about the acute regulation of the levels of these signaling lipids. When Saccharomyces cerevisiae cells are treated with hyperosmotic medium the levels of phosphatidylinositol 3,5-bisphosphate (PI3,5P(2)) increase 20-fold. Here we show that this 20-fold increase is rapid and occurs within 5 min. Surprisingly, these elevated levels are transient. Fifteen minutes following hyperosmotic shock they decrease at a rapid rate, even though the cells remain in hyperosmotic medium. In parallel with the rapid increase in the levels of PI3,5P(2), vacuole volume decreases rapidly. Furthermore, concomitant with a return to basal levels of PI3,5P(2) vacuole volume is restored. We show that Fig 4p, consistent with its proposed role as a PI3,5P(2) 5-phosphatase, is required in vivo for this rapid return to basal levels of PI3,5P(2). Surprisingly, we find that Fig 4p is also required for the hyperosmotic shock-induced increase in PI3,5P(2) levels. These findings demonstrate that following hyperosmotic shock, large, transient changes occur in the levels of PI3,5P(2) and further suggest that Fig 4p is important in regulating both the acute rise and subsequent fall in PI3,5P(2) levels.Keywords
This publication has 38 references indexed in Scilit:
- Essential Role for the Myotubularin-related Phosphatase Ymr1p and the Synaptojanin-like Phosphatases Sjl2p and Sjl3p in Regulation of Phosphatidylinositol 3-Phosphate in YeastMolecular Biology of the Cell, 2004
- Vacuole Size Control: Regulation of PtdIns(3,5)P2Levels by the Vacuole-associated Vac14-Fig4 Complex, a PtdIns(3,5)P2-specific PhosphataseMolecular Biology of the Cell, 2004
- Regulation of Fab1 Phosphatidylinositol 3-Phosphate 5-Kinase Pathway by Vac7 Protein and Fig4, a Polyphosphoinositide Phosphatase Family MemberMolecular Biology of the Cell, 2002
- Osmotic stress–induced increase of phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the lipid kinase Fab1pThe Journal of cell biology, 2002
- Functional Dissection of Lipid and Protein Kinase Signals of PIKfyve Reveals the Role of PtdIns 3,5-P2 Production for Endomembrane IntegrityPublished by Elsevier ,2002
- Fusion of Docked Membranes Requires the Armadillo Repeat Protein Vac8pJournal of Biological Chemistry, 2001
- Mammalian Cell Morphology and Endocytic Membrane Homeostasis Require Enzymatically Active Phosphoinositide 5-Kinase PIKfyveJournal of Biological Chemistry, 2001
- Retrograde Traffic Out of the Yeast Vacuole to the TGN Occurs via the Prevacuolar/Endosomal CompartmentThe Journal of cell biology, 1998
- Vac8p, a Vacuolar Protein with Armadillo Repeats, Functions in both Vacuole Inheritance and Protein Targeting from the Cytoplasm to VacuoleThe Journal of cell biology, 1998
- Multifunctional yeast high-copy-number shuttle vectorsGene, 1992