Design for mixing using bubbles in branched microfluidic channels

Abstract
This letter describes a method for producing chaotic transport trajectories in planar, microfluidic networks prepared by standard, single-step lithography and operated with a steady-state inflow of the fluids into the device. Gaseous slugs flowing through the network produce temporal variation of pressure distribution and lead to stretching and folding of the continuous fluid. Stabilization of the bubbles by surface-active agents is not necessary, and the method is compatible with the wide range of reactions performed in on-chip bioassays.