Modelling tissues in 3D: the next future of pharmaco-toxicology and food research?
- 18 December 2008
- journal article
- review article
- Published by Springer Nature in Genes & Nutrition
- Vol. 4 (1), 13-22
- https://doi.org/10.1007/s12263-008-0107-0
Abstract
The development and validation of reliable in vitro methods alternative to conventional in vivo studies in experimental animals is a well-recognised priority in the fields of pharmaco-toxicology and food research. Conventional studies based on two-dimensional (2-D) cell monolayers have demonstrated their significant limitations: the chemically and spatially defined three-dimensional (3-D) network of extracellular matrix components, cell-to-cell and cell-to-matrix interactions that governs differentiation, proliferation and function of cells in vivo is, in fact, lost under the simplified 2-D condition. Being able to reproduce specific tissue-like structures and to mimic functions and responses of real tissues in a way that is more physiologically relevant than what can be achieved through traditional 2-D cell monolayers, 3-D cell culture represents a potential bridge to cover the gap between animal models and human studies. This article addresses the significance and the potential of 3-D in vitro systems to improve the predictive value of cell-based assays for safety and risk assessment studies and for new drugs development and testing. The crucial role of tissue engineering and of the new microscale technologies for improving and optimising these models, as well as the necessity of developing new protocols and analytical methods for their full exploitation, will be also discussed.Keywords
This publication has 96 references indexed in Scilit:
- Safety and nutritional assessment of GM plants and derived food and feed: The role of animal feeding trialsFood and Chemical Toxicology, 2008
- Three-dimensional cellular microarray for high-throughput toxicology assaysProceedings of the National Academy of Sciences, 2008
- Three-dimensional microenvironments modulate fibroblast signaling responses☆Advanced Drug Delivery Reviews, 2007
- The morphologies of breast cancer cell lines in three‐dimensional assays correlate with their profiles of gene expressionMolecular Oncology, 2007
- Transcriptome profiling in clinical breast cancer: From 3D culture models to prognostic signaturesJournal of Cellular Physiology, 2006
- Systems biology in drug discoveryNature Biotechnology, 2004
- Building epithelial architecture: insights from three-dimensional culture modelsNature Reviews Molecular Cell Biology, 2002
- Myofibroblasts and mechano-regulation of connective tissue remodellingNature Reviews Molecular Cell Biology, 2002
- Long-term expression of differentiated functions in hepatocytes cultured in three-dimensional collagen matrixJournal of Cellular Physiology, 1998
- Designer microenvironments for the analysis of cell and tissue functionCurrent Opinion in Cell Biology, 1990