Using adaptive tracking to classify and monitor activities in a site

Abstract
We describe a vision system that monitors activity in a site over extended periods of time. The system uses a distributed set of sensors to cover the site, and an adaptive tracker detects multiple moving objects in the sensors. Our hypothesis is that motion tracking is sufficient to support a range of computations about site activities. We demonstrate using the tracked motion data to calibrate the distributed sensors, to construct rough site models, to classify detected objects, to learn common patterns of activity for different object classes, and to detect unusual activities.

This publication has 4 references indexed in Scilit: