Relation between myocardial glutathione content and extent of ischemia-reperfusion injury.

Abstract
The relation between the extent of myocardial injury sustained during reperfusion and total glutathione (GSH) content in the ischemic myocardium was examined in anesthetized open-chest pigs subjected to coronary occlusion for 45 minutes and reperfusion for 2 hours. In pigs infused with saline during reperfusion (n = 6) there was a decrease in myocardial GSH content from 380 +/- 48 micrograms/g in normally perfused myocardium to 182 +/- 36 micrograms/g in the ischemic reperfused myocardium (p less than 0.02). Myocardial infarct size (expressed as a percentage of the ischemic area) was 12.5 +/- 0.8%. There was a delay of recovery of contractile function before returning to 60% of preocclusion value. In pigs pretreated with buthionine sulfoximine (BSO) (n = 5), an inhibitor of cellular GSH synthesis, there was reduction in GSH content to 215 +/- 25 micrograms/gm in normally perfused myocardium and to 77 +/- 8 micrograms/gm in the ischemic reperfused myocardium. The extent of injury was greater as evidenced by an increase in infarct size to 30.4 +/- 4.0% (p less than 0.001), severe destructive changes in subepicardial ultrastructure, which were absent in saline-infused pigs, and persistence of dyskinesia throughout reperfusion. In pigs infused with glutathione intravenously (0.8 gm/kg) at a rate of 6.5 mg/kg/min (n = 6), 5 minutes before and continuously during reperfusion, there was an increase in GSH content to 582 +/- 67 micrograms/g in normally perfused myocardium and to 312 +/- 80 micrograms/g in ischemic reperfused myocardium. The increase in myocardial GSH was associated with a reduction in infarct size to 7.5 +/- 1.3% (p less than 0.05, compared with saline-infused pigs) and an early recovery of contractile function of the ischemic myocardium. GSH infusion into pigs pretreated with BSO (n = 4) failed to increase myocardial GSH content and failed to reduce the extent of myocardial injury. Thus, the extent of myocardial injury sustained during reperfusion is very dependent on the effectiveness of its antioxidant defenses. Markedly increased susceptibility to injury occurs when the GSH content in the ischemic myocardium becomes depleted.