A thermal model of polymer degradation during selective laser sintering of polymer coated ceramic powders

Abstract
Reports that measurable amounts of polymer degradation occur during the fabrication of objects from polymer coated ceramic powders by selective laser sintering (SLS). Argues that because the binder is important in achieving strong green parts that can be handled with minimal breakage during post‐processing operations, it is essential to minimize the extent of binder losses. As the first step towards understanding the mechanisms of binder degradation, this paper presents a thermal model of the physical system, noting that the agreement between theory and experiment are good. The model is used to help determine the most influential parameters affecting binder losses during fabrication from polymer coated powders. Predicts that adjustments to laser beam diameter, laser scanning distance and gaseous environment will strongly affect polymer binder degradation during processing. Further predicts correctly that polymer degradation during SLS processing is not sensitive to the inherent degradation kinetics of the polymer.

This publication has 17 references indexed in Scilit: