Abstract
Rations for dairy cattle are currently balanced to meet needs for energy, protein, vitamins, and minerals. While individual vitamins and minerals are considered, energy and protein are generally treated in aggregate even though entities within those aggregates can affect milk yield and composition. Significant efforts have been undertaken to describe ruminal metabolism in detail, but descriptions of post-absorptive metabolism assume constant fractional conversions of energy and protein to milk. A quantitative understanding of nutrient metabolism by the post-absorptive tissues is required, and the splanchnic tissues are critical components of the post-absorptive system as they mediate absorption of nutrients and play a rôle in regulation of metabolite availability.Glucogenic precursor supply can significantly affect endocrine status as well as splanchnic release of glucose, acetate, lactate, ketones, and the non-essential amino acids. Although the relative affinities of the splanchnic tissues for the essential amino acids (AA) are low as compared with the udder, net clearance on a daily basis represents approximately 2/3 of the net supply to the animal due largely to recycling of AA back to the tissue bed. This could be significantly reduced by stimulating removal and use by the udder as splanchnic affinities are much lower than mammary affinities. Additionally, the essential AA composition of absorbed protein is significantly modified by these tissues due to differing affinities for each of the AA. The extent of that modification is not a fixed constant but rather a function of several factors including milk yield. The accuracy of our current feeding systems could be improved if such variable rates of substrate removal replaced current static estimates.
Keywords