Efficient production of [ n ]rotaxanes by using template-directed clipping reactions

Abstract
In this article, we report on the efficient synthesis of well defined, homogeneous [n]rotaxanes (n up to 11) by a template-directed thermodynamic clipping approach. By employing dynamic covalent chemistry in the form of reversible imine bond formation, [n]rotaxanes with dialkylammonium ion (–CH2NH2 +CH2–) recognition sites, encircled by [24]crown-8 rings, were prepared by a thermodynamically controlled, template-directed clipping procedure, that is, by mixing together a dumbbell compound containing a discrete number of CH2NH2 +CH2– ion centers with appropriate amounts of a dialdehyde and a diamine to facilitate the [n]rotaxane formation. A 21-component self-assembly process is operative during the formation of the [11]rotaxane. The oligomeric dumbbells containing CH2NH2 +CH2– ion recognition sites were prepared by a stepwise protocol. Several of the dynamic [n]rotaxanes were converted into their kinetically stable counterparts, first by reduction (“fixing”) of imine bonds with the BH3·THF complex, then by protonation of the complex by addition of acid.