Abstract
The electron velocity distribution is calculated for an idealized model of the high electron mobility transistor using a many-particle Monte Carlo model and a self-consistent two-dimensional Poisson solver. Hot electron effects, nonstationary effects, and real space transfer are analyzed. The results show that significant velocity overshoot, 2.8×107 cm/s at 300 K and 3.7×107 cm/s at 77 K exists under the gate and that the velocity overshoot is limited by both k-space transfer and real-space transfer. The values of the overshoot velocities are much smaller than those obtained from the more conventional drift-diffusion model.