ATP‐Evoked Ca2+ Mobilisation and Prostanoid Release from Astrocytes: P2‐Purinergic Receptors Linked to Phosphoinositide Hydrolysis

Abstract
Astrocyte cultures prelabelled with either [3H]-inositol or 45Ca2+ were exposed to ATP and its hydrolysis products. ATP and ADP, but not AMP and adenosine, produced increases in the accumulation of intracellular 3H-labelled inositol phosphates (IP), efflux of 45Ca2+, and release of thromboxane A2 (TXA2). Whereas ATP-stimulated 3H-IP accumulation was unaffected, its ability to promote TXA2 release was markedly reduced by mepacrine, an inhibitor of phospholipase A2 (PLA2). ATP-evoked 3H-IP production was also spared following treatment with the cyclooxygenase inhibitor, indomethacin. We conclude that ATP-induced phosphoinositide (PPI) breakdown and 45Ca2+ mobilisation occurred in parallel with, if not preceded, the release of TXA2. Following depletion of intracellular Ca2+ with a brief preexposure to ATP in the absence of extracellular Ca2+, the release of TXA2 in response to a subsequent ATP challenge was greatly reduced when compared with control. These results suggest that mobilisation of cytosolic Ca2+ may be the stimulus for PLA2 activation and, thus, TXA2 release. Stimulation of α-adrenoceptors also caused PPI breakdown and 45Ca2+ efflux but not TXA2 release. The effects of ATP and noradrenaline (NA) on 3H-IP accumulation were additive, but their combined ability to increase 45Ca2+ efflux was not. Interestingly, in the presence of NA, ATP-stimulated TXA2 release was reduced. Our data provide evidence that functional P2-purinergic receptors are present on astrocytes and that ATP is the first physiologically relevant stimulus found to initiate prostanoid release from these cells.