Abstract
Measurements of minority carrier lifetime damage constant and divacancy growth following neutron irradiation at 76°K have been used to characterize further the annealing of neutron damage in silicon below 300°K. It has been shown that electron injection into p-type silicon at 76°K causes recovery of the neutron induced defect clusters with the simultaneous appearance of divacancies. Comparison of isochronal annealing curves of damage constant taken with and without prior injection at 76°K illustrates the nature of cluster annealing below 300°K. The thermal annealing results are shown to agree with previous annealing measurements of the carrier removal rate.