Abstract
1. Two series of half-brother-sister lambs of balanced sexes have been reared on widely different (High and Low) planes of nutrition from the end of the third month of foetal life to 41 weeks of age. The effect of this on the growth in live weight and relative development of the body proportions has been studied.2. The feeding of the mothers of the experimental lambs during the last 2 months of pregnancy was such that the High-Plane mothers gained 39·5 lb. live weight during pregnancy as compared with a gain of 1 lb. only in the Low-Plane group. The single lambs from both groups were of equal weight at birth, while on the average each individual twin was 47% heavier in the High-Plane than in the Low-Plane group.3. In post-natal life the High-Plane lambs were fed so as to allow them to grow at their maximum rate and the feeding of the Low-Plane ones was controlled so as to allow them to grow at a slow but uniform rate. Lambs from both groups were killed at birth, at 9 weeks old and at 41 weeks old. At 9 weeks old the Low-Plane lambs killed had an average live weight of 14·3 lb. and the High-Plane ones 61·5 lb.; at 41 weeks old the respective weights were 69·5 and 180 lb.4. The study of the age changes in the High-Plane lambs further proved the theory put forward by Hammond (1932) that in the sheep in post-natal life the different anatomical regions and tissues of the body grow differentially and in a definite order of development. The dressed carcass is later maturing than the organs and offal parts as a whole.5. Of all the organs in the body the brain is the earliest developing, followed closely by the eyes. The thoracic organs as a whole are earlier maturing than the abdominal organs. Of the former, the thyroids, lungs and trachea and the heart are the earliest maturing in that order, while the thymus glands are later maturing. Of the alimentary tract, the oesophagus and the abomasum are the earliest developing parts, while the rumen and reticulum are much later maturing, growing at nearly twice the rate of muscle in the carcass from birth to 41 weeks. Of the other abdominal organs, the kidneys are earliest maturing, growing at approximately similar rate as the lungs and trachea, and slower than the heart in post-natal life. The abdominal fats are the latest maturing of all the organs, and of these kidney fat is the earliest maturing and the caul fat the latest.6. The marked heterogonic growth of the organs appears to be related to their function. Those organs of most vital function to the life of the animal like the brain, eyes, lungs, kidneys, heart, oesophagus, abomasum and small intestines, are relatively well developed at birth, and consequently grow proportionately less in post-natal life than organs like the rumen and reticulum, which have an unimportant function until after the lamb begins to consume fibrous foods, or those whose function is largely that of storage of nutrients, which develop mainly in the later stages of growth.7. The development of the different joints or body regions exhibits a marked gradient of increasing growth rate from the head and feet to the loin region, the feet and head growing least and the loin most in post-natal life, while the legs, neck and shoulders are in an intermediate position, the legs being earlier maturing than the shoulders.8. The major tissues of the body exhibit marked differential growth rates in post-natal life. The order of increasing growth rate with age follows an outward trend from the central nervous system to bone, tendon, muscle, intermuscular fat and subcutaneous fat. Consequently, the early maturing nervous tissue and the skeleton make a greater proportion of their growth earlier in life than does muscle and fat; the latter, particularly subcutaneous fat, does not develop to any great extent until late in the growing period.9. Within any of the major tissues, bone, muscle and fat, well-defined growth gradients are observed. Within the skeleton, in post-natal life, waves of increasing growth intensity pass from centres of early (even foetal) maximum rate of growth near the extremities, towards the central region of the body. As regards the axial skeleton, the skull, or rather the cranium, is the earliest part to develop, and from it waves of increasing growth intensity pass backwards to the lumbar region and downwards to the nose and lower jaw. In each limb, similar growth waves pass with age from the early developing metacarpals and metatarsals (cannon bones) down to the distal bones and up towards the lumbar region of the body, the pelvis and scapula being later developing than the femur and the humerus. The ribs appear to be the latest developing bones of the body, while the sternum situated further down in the body, though late maturing, is, however, earlier maturing than the scapula and the ribs. The bones of the fore-limb appear somewhat later maturing than those of the hind-limb.10. As regards growth in length and thickness of the long bones of the limbs, a similar wave of increasing growth intensity passes from the cannons up the limbs. The upper bones increase relatively more both in length and thickness than the cannons after birth, and growth rate in length is at its maximum at an earlier age than growth rate in thickness.11. In the case of muscle and fat, gradients have been demonstrated in their order of development from the head and neck backwards, and from the lower parts of the limbs (arms and legs) upwards to the loin region.12. Changes in carcass measurements are of the same order as the changes in weight and/or shape of the tissues and parts measured, thus confirming their values as indices of carcass composition as well as conformation.13. Marked differences between the sexes are apparent. The High-Plane males were on the average 15% heavier at birth than the females, which was found to be significant at the 5% level. At 41 weeks the wethers weighed 215·5 lb. and...

This publication has 11 references indexed in Scilit: