Abstract
SUMMARY: Rats were subjected to varying degrees of commissurotomy, followed by implantation of a bipolar electrode into each amygdala. After the kindling of six convulsions at one electrode (primary site), the procedure was applied to the contralateral amygdala (secondary site). Convulsions were observed to develop more rapidly, independent of the degree or kind of transection. After 6 secondary site convulsions, the primary site was re-tested and convulsion-triggering was blocked, except in animals with transection of the rostral portion of the corpus callosum (CC). Collectively, the data indicate: (i) amygdala kindling develops a lasting trace which operates through the midbrain or brainstem; (ii) kindling from a second site utilizes this trace; (iii) a series of 6 convulsions produces negative after-effect which manifests itself at the convulsion level via the anterior CC; (iv) the anterior CC is important in determining the laterality of the forelimb clonus; and (v) the inter-amygdala propagation of after-discharge is blocked by the combined sectioning of the anterior CC and the anterior commissure.